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Abstract - This paper compares different defense 
strategies against various attacks utilizing a dynamic 
game theoretic data fusion framework for cyber network 
defense. In our game theoretic framework, Alerts 
generated by Intrusion Detection Sensors (IDSs) or 
Intrusion Prevention Sensors (IPSs) are fed into the 
data refinement (Level 0) and object assessment (L1) 
data fusion components. High-level situation/threat 
assessment (L2/L3) data fusion based on Markov game 
model and Hierarchical Entity Aggregation (HEA) are 
proposed to refine the primitive prediction generated by 
adaptive feature/pattern recognition and capture new 
unknown features. A Markov (Stochastic) game method 
is used to estimate the belief of each possible cyber 
attack pattern. Game theory captures the nature of cyber 
conflicts: determination of the attacking-force strategies 
is tightly coupled to determination of the defense-force 
strategies and vice versa. A software tool is developed to 
demonstrate and compare the performance of different 
defense strategies used in game theoretic high level 
information fusion for cyber network defense situations 
and a simulation example shows the enhanced 
understating of cyber-network defense. 
 
Keywords: Cyber Defense, Situation Awareness, Impact 
assessment, Information Fusion, Game Theory, Networks 
Security. 
 

1 Introduction 
There are increasing needs for research in the area of 
cyber situational awareness which includes data transfer, 
storage, and recovery security [15]. The protection and 
defense against cyber attacks to computer networks is 
becoming inadequate as the hacker knowledge 
sophisticates and as the network and each computer 
system become more complex.  When evaluating the 
security of a network, it is rarely enough to consider the 
presence of isolated vulnerabilities [18]. Large networks 
typically contain multiple platforms and software 
packages and employ several modes of connectivity 
between various types of intruders from internal (i.e. 
espionage) to external (i.e. terrorists) disgruntled people. 
Inevitably, such networks have security holes that escape 
notice of even the most diligent system administrators.  

 
Cyber attacks in the past were generally one-dimensional, 
mainly in the form of denial of service (DoS) attacks, 
computer viruses or worms, or unauthorized intrusions 
(hacking). These attacks were mainly launched against 
websites, mail servers, or client machines. Recently, 
attacks have fundamentally changed – cyber threats are 
undergoing a diversification that is resulting in multi-stage 
and multi-dimensional attacks that utilize and/or target a 
variety of attack tools and technologies [16, 17]. Most 
contemporary attacks, the latest generation of worms for 
instance, make use of a variety of different exploits, 
propagation methods, and payloads. Infected machines 
may be used to launch attacks against other targets or their 
data could be accessed or deleted. Even more worrisome, 
the trend is toward an intensification of this development, 
potentially resulting in the emergence of many more 
sophisticated cyber attacks. 
 
Therefore, cyberspace security requires next-generation 
network management and intrusion detection systems that 
combine both short-term sensor information and long-
term knowledge databases to provide decision-support 
systems and cyberspace command and control. Recent 
advances in applying data fusion techniques to cyber 
situational awareness are promising. Some pioneering 
works focused on high-level descriptions of these 
approaches are presented in [9-10].  Significant results of 
cyber situation awareness are achieved, but the assessment 
of the impact of a cyber attack and the prediction of an 
attacker’s intent, or high level data fusion, are not fully 
explored. Stochastic game theory was introduced to meet 
the challenge [14]. 
 
Game theory is not a new concept in cyber defense. 
Current game theoretic approaches [1-3] for cyber 
network intrusion detection and decision support are 
based on static matrix games and simple extensive games, 
which are usually solved by game trees.  However, these 
matrix game models lack the sophistication to study multi-
players with relatively large actions spaces, and large 
planning horizons. Some partial results of our dynamic 
Markov game approach have been published in [14].     
 
In this paper, we extend our game theoretic data fusion 
with data mining framework for cyber defense to include 
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the human in the loop.  Particularly, we study various 
defense strategies based on different game equilibrium 
solutions such as pure Nash strategies, mixed Nash 
strategies, and Mini-max strategies.   
 
The framework itself can be applied to multiple domains 
from urban warfare to cyber attack. In this framework, a 
decentralized Markov game is used to model the evolution 
of Enemy Course of Actions (ECOAs) originating from an 
initial prediction generated by pattern recognition. Our 
approach has several features: 

1) Recognition/Refinement/Learning Structure. If the 
observed features are already associated with 
adversary intents, we can easily obtain them by 
pattern recognition. In some time-critical 
applications, the primitive prediction can be used 
before it is refined by relatively time-consuming 
high-level data fusion.  Unknown or new cyber attack 
patterns are input to dynamic learning module to 
update the feature-situation association database;  
2) Decentralized. Each cluster or team of IDSs makes 
decisions mostly based on the local information. We 
put more autonomies in each group allowing for more 
flexibility;  
3) Markov Decision Process (MDP) can effectively 
model uncertainties in the cyber network 
environment;  
 4) Game framework is an effective and ideal model 
to capture the nature of network conflicts: the 
determination of one side’s strategies is tightly 
coupled to that of the other side’s strategies and vice 
versa;  
5) Neutral players: white (neutral) 
objects (normal network nodes) are 
modeled as one of the multi-players 
so that their possible COA will be 
estimated and considered by the 
other players; 

The rest of the paper is organized as 
follows. Section 2 describes our proposed 
framework. Section 3 presents a Markov 
model for cyber network. Section 4 
describes the simulation tool and 
experimental results. Section 5 concludes 
the paper. 
 

2 Framework for Cyber 
Situation Awareness 

We propose an information fusion based 
decision and control framework (Fig. 1) 
to detect and predict the multistage 
stealthy cyber attacks. Our cyberspace security system has 
two fully coupled major parts: 1) Data fusion module (to 
refine primitive awareness and assessment, and to identify 
new cyber attacks); and 2) Dynamic/adaptive feature 

recognition module (to generate primitive estimations, and 
to learn new identified new or unknown cyber attacks).  

Various logs and alerts generated by Intrusion Detection 
Sensors (IDSs) or Intrusion Prevention Sensors (IPSs) are 
fed into the L1 data fusion components. The fused objects 
and related pedigree information are used by a 
feature/pattern recognition module to generate primitive 
prediction of intents of cyber attackers. If the observed 
features are already associated with adversary intents, we 
can easily obtain them by pattern recognition. In some 
time-critical applications, the primitive prediction can be 
used before it is refined; because the high-level data fusion 
refinement operation is relatively time-consuming in the 
multiplicative of probability calculations.  
High-level (L2 and L3) data fusion based on Markov game 
models is proposed to refine the primitive prediction 
generated in stage 1 (Dynamic and Adaptive Feature 
Recognition) and capture new or unknown cyber attacks. 
The Markov (Stochastic) game method (MGM) is used to 
estimate the belief of each possible cyber attack graph. 
Game theory can capture the nature of cyber conflicts: the 
determination of the attacking-force strategies is tightly 
coupled to the determination of the defense-force 
strategies and vice versa. Also MGM can deal with the 
uncertainty and incompleteness of the available 
information. We propose a graphical model to represent 
the structure and evolution of the above-mentioned 
Markov game models so that we can efficiently solve the 
graphical game problem. 

The captured unknown or new cyber attack patterns will 
be associated to related L1 results in the dynamic learning 
block, which takes deception reasoning, trend/variation 

identification, and distribution models and calculations 
into account. Our approach to deception detection is 
heavily based on the application of pattern recognition 
techniques to detect and diagnose what we call out-of-

 
Fig. 1:  A Data Fusion Approach for Cyber Situation Awareness and Impact Assessment 



normal (anomaly) conditions in the cyber environment. 
The results of dynamic learning or refinement shall also be 
used to enhance L2 and L3 data fusion. This adaptive 
process may be considered as level 4 data fusion (process 
refinement; see the 2004 DFIG model [11]).   
In this paper, we will focus on the Level 3 data fusion part 
in the overall framework shown in Fig. 1.  We will show 
how concepts from dynamic Markov game can be used to 
find and evaluate strategies for defending cyber network 
attacks.    

3 Markov Game Model 
To address the cyber network security problem from a 
system control and decision perspective, we present a 
Markov game model [4].  In general, a Markov 
(stochastic) game  is specified by (i) a finite set of players 
N, (ii) a set of states S, (iii) for every player i N∈ , a finite 
set of available actions iD  (we denote the overall action 
space iD x Di N= ∈ ),  (iv) a transition rule : ( )q S D S× →∆ , 
(where ( )S∆ is the space of all probability distributions 

over S), and  (v) a payoff function : Nr S D R× → .  For the 
cyber decision support and attacker intent inference 
problem, we obtain the following distributed discrete time 
Markov game (we revise the Markov game model [5] 
used for battle-space and focus on the cyber network 
attack domain properties): 
Players (Decision Makers) --- Cyber attackers, network 
defense system, and normal network users are players of 
this Markov game model. We denote cyber attackers as 
the red team, network defense systems (IDSs, Firewalls, 
Email-Filters, Encryption) as the blue team, and a normal 
network user as white team.  The cooperation within the 
same team is also modeled so that the coordinated cyber 
network attacks can be captured and predicted.        

State Space --- All the possible states of involved network 
nodes consist of the state space. For example, the web-
server (IP = 26.134.3.125) is controlled by attackers. To 
determine the optimal IDS deployment, we include the 
defense status for each network nodes in the state space. 
So for the ith network node, there is a state vector si(k) at 
time k. 

( ) ( , , )i Ts k f p a=                                    (1) 
where f is the working status of the ith network node, p is 
the protection status, T is the transpose operator, and a is 
the status of being attacked. “Normal” and “malfunction” 
are typical values of f with the meaning that the node is in 
the normal working status or malfunction (Recall that in 
battle space cases, the function status of any unit values 
can be “undestroyed”, “damaged”, or “destroyed”).  p can 
be the defense unit/service (such as firewall, IDS and 
filter, with probability) assigned to the node and p = 
NULL means that the ith node is unprotected. a is the 
status of being attacked. The type of attacks will be 
specified in Action Space.    

Remark 1:  It is not difficult to understand that the system 
states are determined by two factors: 1) previous states and 
2) the current actions. So the whole system can be model 
by a first-order Markov decision process.     
The overall system state at time k is  

1 2[ ( ), ( ), , ( )]Ms s k s k s kk =                      (2) 

where M is the number of nodes in the involved cyber 
network. 
Action Space --- At every time step, each player chooses 
targets with associated actions based on its local network 
information.  For normal network users, the action types 
are http services, email services, ftp services, etc.  The 
action-decision control of the ith white player at time k is 

( ) ( , )i Tu k t vw =                             (3) 

where vector t is the network node providing services and 
v is the service type requested. (We assume that the 
normal users know the server/service in advance). [Note: 
we use u for action decisions because action decisions 
typically are determined as utility functions with the 
higher payoff]  

For red team (cyber network attackers), we consider the 
following types of network-based attacks: 

• Buffer overflow (web attack): it occurs when a 
program does not check to make sure the data it is 
putting into a space will actually fit into that space. 
Vulnerability exists in Microsoft IIS 5.0 running on 
Windows 2000 that allows a remote intruder to run 
arbitrary codes on the victim machine, allowing 
them to gain complete administrative control of the 
machine. Apache HTTP Server version 1.3.19 
could allow a remote attacker to send an HTTP 
request to cause the server to crash with unexpected 
behavior. 

• Semantic URL attack (web attack):  In semantic URL 
attack, a client manually adjusts the parameters of 
its request by maintaining the URL's syntax but 
altering its semantic meaning. This attack is 
primarily used against CGI driven websites. A 
similar attack involving web browser cookies is 
commonly referred to as cookie poisoning. 

• E-mail Bombing (email attack):  In Internet usage, an 
e-mail bomb is a form of net abuse consisting of 
sending huge volumes of e-mail to an address in an 
attempt to overflow the mailbox or overwhelm the 
server. The possible re-action is to identify the 
source of the email bomb/spam and configure your 
router (or have your Network Service Provider 
configure the router) to prevent incoming packets 
from that address. 

• E-mail spam (email attack): Spamming is the abuse of 
electronic messaging systems to send unsolicited, 
undesired bulk messages. Spammers often collect 
addresses of prospective recipients from use-net 



postings or from web pages, obtain them from 
databases, or simply guess them by using common 
names and domains. By popular definition, spam 
occurs without the permission of the recipients. 

• MALware attachment (email attack): Malware is 
software designed to infiltrate or damage a 
computer system without the owner's informed 
consent. It is a blend of the words "malicious" and 
"software".  Common MALware attacks are worms, 
viruses, trojan horses, etc. 

• Denial-of-service (network attack): Denial-of-service 
(DoS) attack is an attempt to make a computer 
resource unavailable to its intended users. Typically 
the targets are high-profile web servers where the 
attack is aiming to cause the hosted web pages to be 
unavailable on the Internet. A distributed denial of 
service attack (DDoS) occurs when multiple 
compromised systems flood the bandwidth or 
resources of a targeted system, usually a web 
server(s). These systems are compromised by 
attackers using a variety of methods.  

Remark 2: Some attacks may be multi-stage. For example, 
e-mail spam and MALware are used first to gain control of 
several temporal network nodes, which are usually not-
well protected servers.  Then DoS attack will be triggered 
to a specified and ultimate target. Our dynamic Markov 
game model can handle these attacks from a planning 
perspective. Our mixed Nash strategy pair is based on a 
fixed finite planning horizon. See Strategies for details.    

For the blue team (network defense system), we consider 
the following defense actions: 

• IDS deployment: we assume that there are limited 
IDSs. IDS deployment is similar to resource 
allocation (target selection) problems in traditional 
battle-space situations. We try to find an optimal 
deployment strategy to maximize the chance of 
detecting all possible cyber network intrusions. 

• Firewall configuration: A firewall is an information 
technology (IT) security device which is configured 
to permit, deny or proxy data connections set and 
configured by the organization's security policy. 
Firewalls can either be hardware and/or software 
based. 

• Email-filter configuration:  Email filtering is the 
processing of e-mail to organize it according to 
specified criteria. Most often this refers to the 
automatic processing of incoming messages, but the 
term also applies to the intervention of human 
intelligence in addition to artificial intelligence, and 
to outgoing emails as well as those being received. 
Email filtering software inputs email and for its 
output, it might (a) pass the message through 
unchanged for delivery to the user's mailbox, (b) 
redirect the message for delivery elsewhere, or (c) 

throw the message away. Some e-mail filters are 
able to edit messages during processing. 

• Shut down or reset servers. 
Transition Rule --- The objective of the transition rule is to 
calculate the probability distribution over the state space 

( | , , , )1
B R Wq s s u u uk k k k k+ , where , 1s sk k +  are system states at 

time k and k+1 respectively, , ,B R Wu u uk k k  are the overall 
decisions of the blue team (network defense system), the 
red team (cyber attackers) and the white team (normal 
network users), respectively, at time step k.  How to decide 
the overall actions for each team are specified in 
Strategies.  

For each network node (server or workstation), the state of 
time k+1 is determined by three things: 1) state at time k; 
2) control strategies of the three teams; and 3) the 
attack/defense efficiency.  If we compare part 3) to battle-
space domain, the efficiency is the analogue of kill 
probability of weapons. 

For example, if the state of node 1 at time k is [“normal”, 
“NULL”, “NULL”], one component of the red action is 
“email-bombing node 1”, one component of blue action is 
“email-filter –configuration-no-block for node 1”,  and all 
white actions are not related to node 1, then the  
probability distribution of all possible next states of node 1 
is: [“normal”, “email-filter-configuration”, “email-
bombing”] with probability 0.4; [“slow response”, “email-
filter-configuration”, “email-bombing”] with probability 
0.3; and [“crashed”, “email-filter-configuration”, “email-
bombing”] with probability 0.3.  The actual probabilities 
depend on the efficiency of attacking and defending 
actions.  

Payoff Functions --- In our proposed decentralized 
Markov game model, there are two levels of payoff 
functions for each team (red, blue, or white): lower 
(cooperative within each team) level and higher (non-
cooperative between teams) level payoff functions. This 
hierarchical structure is important to model the 
coordinated cyber network attacks and specify optimal 
coordinated network defense strategies and IDS 
deployment.        

The lower level payoff functions are used by each team 
(blue, red or white side) to determine the cooperative team 
actions for each team member based on the available local 
information. For the jth unit of blue force, the payoff 
function at time k is defined as ( )( ), ( ), ( );B B B Bs k u k W k kj j jφ , 

where ( )Bs k skj ⊆  is the local information obtained by the 

jth blue member, ( )Bu kj  is the action taken by the blue team 

member at time k, and ( )BW k , the weights for all possible 
action-target couples of blue force, is announced to all 
blue team members and determined according to the top 
level payoff functions from a team-optimal perspective. 



( )
( ) ( ) ( )
( ), ( ), ( );   

        ( ) ( ), ( ) ( )

B B B Bs k u k W k kj jj

B B B BU s k w W k u k C u kj j j

φ =

−
        (4) 

where, ( )( )BU s kj
 is the utility or payoff of the current local 

network state. Usually, it is a negative value if a network 
node is in malfunction status due to a cyber attack. The 
specific value depends on the value of the network node. 
The counterpart in the battle-space domain is the target 
value of each platform. Function ( )( ), ( )B Bw W k u kj  will 

calculate the weight for any specified action decision for 
the jth member of the blue team based on the 
received ( )BW k , which is determined on a team level and 
indicates the preference and trend of team defense 
strategies. ( )( )BC u kj

 is the cost of action to be taken by the 

blue team member. 
Similarly, we obtain the lower level payoff functions for 
the jth member of red and white team, 

( )
( ) ( ) ( )

( ), ( ), ( );   

      ( ) ( ), ( ) ( )

R R R Rs k u k W k kj jj

R R R RU s k w W k u k C u kj j j

φ =

−
       (5) 

( )
( ) ( ) ( )

( ), ( ), ( );   

    ( ) ( ), ( ) ( )

W W W Ws k u k W k kj jj

W W W WU s k w W k u k C u kj j j

φ =

−
      (6) 

Remark 3: It is well known that non-neutral civilians often 
play an active role in wars. That is, they are not just 
passively static but might purposefully take actions to help 
one side in a battle to minimize their losses or achieve 
some political purpose. Unfortunately, existing game 
theoretic models usually do not consider this situation, 
although collateral damage has been considered in a paper 
on a two-player game model by Cruz et al [6]. In this 
research, a three-player dynamic game model is 
formulated, in which two opposing forces and one normal 
player that might be either neutral or slightly biased [7]. In 
our current implementation, the white units only care 
about their possible losses. For an example, when a slower 
or malfunctioned network node is detected, normal 
network users will find a COA to keep themselves as far 
as possible from the node.  In addition, there may be no 
cooperation between the white team members, so we can 
simply set ( )WW k  to 1.  

Remark 4:  In some instances of the use of game theory 
for military applications by others [1-3], it is almost 
always the case that zero-sum game theory is used. In 
zero-sum game theory, the players have opposite 
objectives. If one player maximizes an objective function, 
the other automatically minimizes it. This is equivalent to 
a player maximizing an objective function and the other 
player maximizing the negative of the same function. 
Since the sum of the objective functions is zero, the game 

is called a zero-sum game. But for the cyber network 
attack scenario, we propose a non-zero-sum game model 
for the following two reasons: 1) there are three players as 
mentioned in Remark 4; 2) even in the case without a 
white player, there are some cases the objective of 
attacking side and defense side are not opposite of each 
other. For example, the hackers may be deterred from any 
attacking actions by well-protected defense systems. In 
this case, payoffs of both sides decrease, which is 
conflicting the zero-sum assumption. So we model the 
cyber network attack and defense system as a non-zero-
sum dynamic Markov game. 

The top level payoff functions at time k are used to 
evaluate the overall performance of each team.  

( )( ( ), ; ) ( ), ( ), ( );
1

BMB B B B B B BV s k u k s k u k W k kj j jk
j

φ= ∑
=

    (7) 

( )( ( ), ; ) ( ), ( ), ( );
1

RMR R R R R R RV s k u k s k u k W k kj j jk
j

φ= ∑
=

  (8) 

( )( ( ), ; ) ( ), ( ), ( );
1

WMW W W W W W WV s k u k s k u k W k kj j jk
j

φ= ∑
=

 (9) 

In our approach, the lower lever payoffs are calculated 
distributively by each team member and sent back to 
network administrator via communication networks. 
Strategies --- In this paper, we have tried several well 
known types of strategies. Here we only give a brief 
description about the following three of them. 

Min-max strategies: This kind of strategies will give a 
conservative solution to minimize the possible maximum 
“loss”. Actually, in our problem, it is a max-min solution 
in the sense that each player maximizes the possible 
minimum his payoffs. So, this kind of strategies is also 
called safest solutions, in which we consider the worst-
case attacks from network threats. 
Pure Nash Strategies: The Nash equilibrium (named after 
John Nash [8] who proposed it) is a kind of optimal 
collective strategy in a game involving two or more 
players, where no player has anything to gain by changing 
only his or her own strategy. If each player has chosen a 
strategy and no player can benefit by changing his or her 
strategy while the other players keep theirs unchanged, 
then the current set of strategy choices and the 
corresponding payoffs constitute a Nash equilibrium.  
Mixed Nash Strategies: A mixed strategy is used in game 
theory to describe a strategy comprised of possible actions 
and an associated probability, which corresponds to how 
frequently the action is chosen. Mixed strategy Nash 
equilibria (NE) are equilibria where at least one player is 
playing a mixed strategy. It was proved by Nash that that 
every finite game has a Nash equilibria but not all has a 
pure strategy Nash equilibrium. While computing his 



mixed NE strategy, each player pays attention only to the 
average payoff functions.  

In our cyber network security application, mixed Nash 
strategies are preferred since the existence is guaranteed. 
In addition, the stochastic property of mixed Nash strategy 
is compatible to the Markov (stochastic) game model.  
Playing a mixed strategy can also keep your opponent off 
balance. The worst case payoff of a mixed strategy may be 
better than the worst case payoff of a pure strategy. 

In our proposed approach, the solution to the Markov 
game is obtained via a K time-step look-ahead approach, 
in which we only optimize the solution in the K time-step 
horizon. K usually takes 2, 3, 4, or 5.  The suboptimal 
technique is used successfully for reasoning in games such 
as chess, backgammon and monopoly.  

Remark 5: The K-step look-ahead (or moving window) 
approach well fits the situations in which multi-step cyber 
network attacks occurs since we evaluate the performance 
of each team based on the sum of payoffs during a period 
of K-time steps. 
 
Random defense strategies:  Cyber network defense 
strategies are randomly generated. Each possible element 
in the Blue Action space is chosen with equal probability.   
 
Probability-based defense strategies: A Markov 
Decision Process (MDP) is created to assist the cyber 
network defender to specify a defense strategy, which can 
maximize the cumulative function of the rewards.     
 

4 Experiments 

4.1 Simulation Tool 
To evaluate our game theoretic approach for cyber attack 
prediction and mitigation and compare different strategies, 
we have constructed a Cyber Game Simulation Platform 
(CGSP) based on an open-source network experiment 
specification and visualization tool kit (ESVT). [ESVT] 
Through this event-based, interactive and visual 
simulation environment, various attack strategies (single 
stage or multi-staged) and scenarios can be easily played 
out and the effect of game theoretic attack prediction and 
mitigation can be visually and quantitatively evaluated. 
Fig.2 is a snapshot of the CGSP environment. 

 

Fig.2 Cyber Game Simulation Platform (CGSP) 

 

The implemented network components in this platform 
includes Computer (host), Switch, OSPF Router or 
Firewall, Link (connection), and (Sub) Network 
(Simulated by a node). 

Besides the ordinary network properties such as 
processing capacity, bandwidth, and delay etc., CGSP 
components can be assigned a number of network attack 
containment or traffic mitigation properties to act as 
various defense roles, including smart IDS (intrusion 
detection systems), incoming traffic block, and outgoing 
traffic block. Additionally and more importantly, these 
defense roles or network defense properties can be 
deployed and re-deployed on the fly during a game 
simulation run-time based on the local intelligence and 
orders from higher-level command centers. 
The color of a link represents the traffic volume on that 
link (in KBps and in Mbps). Light Gray: less than 1 
percent of bandwidth. Green: more than 1 percent of 
bandwidth. Yellow: between green and red. Red: more 
than 30 percent of bandwidth  

The color of a host indicates the host status. Red: Infected 
node. Green: Vulnerable node but not infected. Gray: 
Non-vulnerable node.  
Some features of our tool include: (1) An integrated 
environment to plan and specify interactive network 
simulation experiments. At the first step, it can be used to 
draw the network topology and specify component 
properties such as susceptibility, server, or non-server, etc. 
Users can also change the properties of a group of 
components or all components by invoking the global 
component and script property configuration window. The 
topology builder is designed to be scalable and can support 
large topologies with thousands of components. (2) 
Network protocol neutral: Network packets and their 
communication are simulated by high-level event objects 
and their movement across various components. Specific 
network protocol details are ignored. We ignore many 
such technological details so we can focus on attack 
scenario construction and defense strategies. Preliminary 
emulation experiments have shown that such network 
protocol neutral simulation yields a relatively high fidelity. 



(3) Event driven simulation. It means to represent and 
organize network dynamics by events in a network 
environment and trace all the events. A running event may 
trigger a new event to be generated. So every step of 
simulation is to let all the events to be finished if they can 
finish. Event driven is complemented by object driven 
since some host will generate new events even when there 
is no triggering event on the host (For example, during a 
worm break or a infected host participating in a DoS 
attack). We define a step of network simulation, which 
means a non-interruptible time period of the simulation. 
(4) For router simulation, if we use Dijkstra's Algorithm 
[12], then we have to generate a table for every router. 
Dijkstra's single-source shortest-path algorithm computes 
all shortest paths from a single vertex. But the storage of 
such table in every node wastes valuable computer 
resources. Another algorithm is called Floyd's all-pairs 
shortest-path algorithm, or the Floyd-Warshall All-Pairs-
Shortest-Path algorithm. It solves all the shortest paths in 
the same step. We use this algorithm to get the “shortest 
path” [13]. 

In our simulation software, network attacks and defenses 
are simulated in CGSP by events. Live network packets 
and other communications are represented and simulated 
by the main network event queue. Users or software 
agents can inject packets or network events through the 
timed event (M/M/1) queue. Security alerts or logs are 
generated and stored in the security log queue.  

There are a number of cyber attacks that are included in 
the CGSP implementation: Port scan, Buffer attack (to 
gain control), Data bomb or Email bomb from and to a 
single host, Distributed Denial of service from multiple 
hosts, Worm attack, and Root right hack (confidentiality 
loss). [Note: Both buffer attack victims and worm 
infectives will join the distributed denial of service when 
they receive the DDOS command.] 
The arsenal of network defense team includes: Smart IDS 
(Accuracy and false positive adjustable), Directional 
traffic block (outgoing or incoming), Host Shutdown, Host 
Reset (shutdown and restart). [Note: Both SHUTDOWN 
and RESET will clear the infection status on the 
host.] 

4.2 Computer Simulation and 
Experiments  

In the simulated scenario as shown in Fig. 2, 
there are 23 computers, 2 routers, 7 switches, 
and 1 network.  In this scenario, we first limit 
the look-ahead steps K to 2 (which means the 
defense side does not consider the multi-stage 
attacking patterns). In this case, we 
implemented Nash strategies for cyber network 
defense side. We can see from Fig. 3 and Fig. 4 
that a target computer (web server) is infected 
or hacked. Then the computer (web server) will 
be used by attacking force to infect other more important 

target computers such as file servers or email servers. This 
two-step attacking scheme is based on two facts: 1) a 
public web server is easy to attack and 2) an infected 
internal computer (web server in this case) is more 
efficient and stealthy than an external computer to attack 
well protected computers such as data servers or email 
servers. 

 
Fig. 3:  A public web server is infected or hacked 

 
Fig. 4 Three more important data servers are attacked by the 

infected internal web server 
 
In the next run, we set the look-ahead step K=5. Then no 
network nodes are infected or hacked during the 
simulation of 2 hours. If a public server is infected, the 
defense side can foresee the enemy’s next attacking 
internal server from the infected network node.  Then a 
shut-down or reboot action will be taken to destroy the 
multi-stage attack at the first stage.    
 

Fig. 5:  Infection comparison of various options  



In addition to the explained run, we performed many 
experiments. We compared the results using the various 
strategies, such as random defense strategies, probability-
based defense strategies (from Markov decision process 
without consideration the interactions between defender 
and attacker), mini-max defense strategies, mixed Nash 
strategies (applied in the explained simulation as shown in 
Fig. 3 – Fig. 4), mixed Nash strategies without collateral 
damage consideration in the cost function of blue side. 
Since the simulation is stochastic, the results consist of the 
mean of 10 runs for each case with K=5, which are shown 
in Fig. 5 (Only the damage information of the Blue side is 
shown).  
 
From the damage comparison results, we can see that our 
proposed Markov game framework with mixed Nash 
equilibrium for threat detection and situation awareness is 
better than the other methods if we consider the much 
higher defense costs in min-max defense strategies and the 
higher traffic volume in the Mixed Nash strategies without 
the  collateral damage (CD).  

5 Conclusion 
In this paper, we have compared different defense 
strategies implemented in an information-fusion/data-
mining based situation awareness and adversary intent 
inference in a cyber attack and network defense scenario. 
The network security system was evaluated and protected 
from a perspective of data fusion and system control. The 
goal of our approach was to examine the estimation of 
network states and projection of attack activities (similar 
to ECOA in the warfare scenario). We used Markov game 
theory’s ability to “step ahead” to infer possible adversary 
attack patterns. Extensive simulations were performed to 
verify and illustrate the benefits of this cyber information 
fusion model. The performance of our algorithm was very 
promising and demonstrates the effective control tradeoffs 
associated with cyber-security information management 
based on cyber situational and threat aware information 
fusion. 
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